TU Berlin

Methoden der Künstlichen IntelligenzPublikationen

Inhalt des Dokuments

zur Navigation

Prof. Dr. Manfred Opper

Lupe
  • Leiter der Einheit KI
  • Raum: MAR 4.017
  • Telefon: +4930 314-73749
  • E-Mail: manfred.opper <AT> tu-berlin.de

 

 


Sprechstunde nach Vereinbarung

Publikationen

Expectation propagation for continuous time stochastic processes
Zitatschlüssel CsSchOpSa16
Autor Botond Cseke and David Schnoerr and Manfred Opper and Guido Sanguinetti
Seiten 494002
Jahr 2016
DOI http://dx.doi.org/10.1088/1751-8113/49/49/494002
Journal Journal of Physics A: Mathematical and Theoretical
Jahrgang 49
Nummer 49
Verlag IOPscience
Zusammenfassung We consider the inverse problem of reconstructing the posterior measure over the trajectories of a diffusion process from discrete time observations and continuous time constraints. We cast the problem in a Bayesian framework and derive approximations to the posterior distributions of single time marginals using variational approximate inference, giving rise to an expectation propagation type algorithm. For non-linear diffusion processes, this is achieved by leveraging moment closure approximations. We then show how the approximation can be extended to a wide class of discrete-state Markov jump processes by making use of the chemical Langevin equation. Our empirical results show that the proposed method is computationally efficient and provides good approximations for these classes of inverse problems.
Link zur Publikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe