direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Prof. Dr. Manfred Opper

Lupe [1]
  • Leiter der Einheit KI
  • Raum: MAR 4.017
  • Telefon: +4930 314-73749
  • E-Mail: manfred.opper <AT> tu-berlin.de

 

 


Sprechstunde nach Vereinbarung

  • Forschungsgebiete [2]
  • Publikationen [3]
  • Lebenslauf [4]

Publikationen

<< zurück [5]
vor >> [17]

2010

Approximate inference in continuous time Gaussian-Jump processes [21]

Manfred Opper and Andreas Ruttor and Guido Sanguinetti

Advances in Neural Information Processing Systems 23, 1831–1839. 2010

Link zur Publikation [22] Download Bibtex Eintrag [23]

Comparing diffusion and weak noise approximations for inference in reaction models [24]

Andreas Ruttor and Florian Stimberg and Manfred Opper

Proceedings of the Fourth International Workshop on Machine Learning in Systems Biology (October 15-16, 2010, Edinburgh, UK), 149–152. 2010

Link zur Publikation [25] Download Bibtex Eintrag [26]

MCMC for continuous time switching models [27]

Florian Stimberg and Andreas Ruttor and Manfred Opper

NIPS Workshop on Monte Carlo Methods for Modern Applications (December 10, 2010, Whistler, Canada) 2010

Link zur Publikation [28] Download Bibtex Eintrag [29]

Learning combinatorial transcriptional dynamics from gene expression data [30]

Manfred Opper and Guido Sanguinetti

Bioinformatics. Oxford Journals, 1623-1629. 2010

Download Bibtex Eintrag [31]

Regret Bounds for Gaussian Process Bandit Problems [32]

Steffen Grünewälder and Jean-Yves Audibert and Manfred Opper and John Shawe-Taylor

JMLR Workshop and Conference Proceedings, 273-280. 2010

Download Bibtex Eintrag [33]

2011

Bayesian Inference for Models of Transcriptional Regulation Using Markov Chain Monte Carlo Sampling [34]

Florian Stimberg and Andreas Ruttor and Manfred Opper

Proceedings of the 8th International Workshop on Computational Systems Biology (WCSB). Tampere University of Technology, Tampere, Finland, 169–172. 2011

Link zur Publikation [35] Download Bibtex Eintrag [36]

Inference in continuous-time change-point models [37]

Florian Stimberg and Manfred Opper and Guido Sanguinetti and Andreas Ruttor

Advances in Neural Information Processing Systems 24, 2717–2725. 2011

Link zur Publikation [38] Download Bibtex Eintrag [39]

Analytical Results for the Error in Filtering of Gaussian Processes [40]

Alex Susemihl and Manfred Opper and Ron Meir

Advances in Neural Information Processing Systems 24. Curran Associates, Inc., 2303–2311. 2011

Link zur Publikation [41] Download Bibtex Eintrag [42]

Approximate inference for continuous–time Markov processes [43]

Cédric Archambeau and Manfred Opper

Bayesian Time Series Models. Cambridge University Press, 125–140.. 2011

Link zur Publikation [44] Download Bibtex Eintrag [45]

Estimating parameters in stochastic systems: A variational Bayesian approach [46]

Michail D. Vrettas and Dan Cornford and Manfred Opper

Physica D: Nonlinear Phenomena. Elsevier, 1877-1900. 2011

Download Bibtex Eintrag [47]

Common Input Explains Higher-Order Correlations and Entropy in a Simple Model of Neural Population Activity [48]

Jakob Macke and Manfred Opper and Matthias Bethge

Physical Review Letters. American Physical Society, 208102. 2011

Download Bibtex Eintrag [49]

Expectation Propagation with Factorizing Distributions: A Gaussian Approximation and Performance Results for Simple Models [50]

Fabiano Ribeiro and Manfred Opper

Neural Computation. MIT Press, 1047–1069. 2011

Download Bibtex Eintrag [51]

2012

Bayesian Inference for Change Points in Dynamical Systems with Reusable States—a Chinese Restaurant Process Approach [52]

Florian Stimberg and Manfred Opper and Andreas Ruttor

Proceedings of the International Conference on Artificial Intelligence and Statistics 2012

Link zur Publikation [53] Download Bibtex Eintrag [54]

Optimal control as a graphical model inference problem [55]

Hilbert J. Kappen and Vincenc Gomez and Manfred Opper

Machine Learning. Springer, 159-182. 2012

Link zur Publikation [56] Download Bibtex Eintrag [57]

2013

Dynamic state estimation based on Poisson spike trains—towards a theory of optimal encoding [58]

Alex Susemihl and Ron Meir and Manfred Opper

Journal of Statistical Mechanics: Theory and Experiment, P03009. 2013

Link zur Publikation [59] Download Bibtex Eintrag [60]

<< zurück [61]
vor >> [73]

Postadresse

TU Berlin
Fakultät IV
Elektrotechnik und Informatik
Sekr. MAR 4-2
Marchsstrasse 23
D-10587 Berlin
------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008