direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste

<< zurück [1]
vor >> [17]

Efficient Bayesian Inference for a Gaussian Process Density Model [21]

Donner, C. and Opper, M.

Proceedings of UAI 2018. AUAI Press, 53-62. 2018

Download Bibtex Eintrag [22]

Expectation Propagation for Approximate Inference: Free Probability Framework [23]

Cakmak, B. and Opper, M.

Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 1276-1280. 2018

Download Bibtex Eintrag [24]

Approximate inference in latent Gaussian-Markov models from continuous time observations [25]

Cseke, B., Opper, M. and Sanguinetti, G.

Advances in Neural Information Processing Systems, 971–979. 2013

Link zur Publikation [26] Download Bibtex Eintrag [27]

Gaussian Processes for Plume Distribution Estimation with UAVs [28]

Gosmann, J.

2013 TU Berlin

Link zur Publikation [29] Download Bibtex Eintrag [30]

Bayesian Inference for a Cox-Ingersoll-Ross Model with changing Parameters and Application to Finance Data [31]

Herrmann, J.

2014 Technische Universität Berlin

Link zur Publikation [32] Download Bibtex Eintrag [33]

2

Dynamical Functional Theory for Compressed Sensing [34]

Çakmak, B., Opper, M., Winther, O. and Fleury, B. H.

2017 IEEE International Symposium on Information Theory (ISIT). IEEE Press, 2143-2147. 2017

Download Bibtex Eintrag [35]

A

Mutual Information, Metric Entropy, and Risk in Estimation of Probability Distributions [36]

Haussler, D. and Opper, M.

Annals of Statistics, 2451–2492. 1997

Download Bibtex Eintrag [37]

B

Switching Regulatory Models of Cellular Stress Response [38]

Sanguinetti, G., Ruttor, A., Opper, M. and Archambeau, C.

Bioinformatics, 1280-1286. 2009

Link zur Publikation [39] Download Bibtex Eintrag [40]

Learning combinatorial transcriptional dynamics from gene expression data [41]

Opper, M. and Sanguinetti, G.

Bioinformatics. Oxford Journals, 1623-1629. 2010

Download Bibtex Eintrag [42]

Switching Regulatory Models of Cellular Stress Response [43]

Sanguinetti, G., Ruttor, A., Opper, M. and Archambeau, C.

Bioinformatics 2009

Download Bibtex Eintrag [44]

Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster [45]

Opper, M., Dewar, M. A., Kadirkamanathan, V. and Sanguinetti, G.

BMC Systems Biology. BMC Systems Biology %, 669 - 676. 2010

Download Bibtex Eintrag [46]

C

Learning Curves and Bootstrap Estimates for Inference with Gaussian Processes: A Statistical Mechanics Study [47]

Malzahn, D. and Opper, M.

Complexity, 57-63. 2003

Link zur Publikation [48] Download Bibtex Eintrag [49]

Tractable Inference for Probabilistic Data Models [50]

Csató, L., Opper, M. and Winther, O.

Complexity, 64-68. 2003

Link zur Publikation [51] Download Bibtex Eintrag [52]

Visualizing the effects of a changing distance on data using continuous embeddings [53]

Gruenhage, G., Opper, M. and Barthelme, S.

Computational Statistics & Data Analysis. Elsevier, 51 - 65. 2016

Link zur Publikation [54] Download Bibtex Eintrag [55]

E

Distribution of Internal Fields and Dynamics of Neural Networks [56]

Henkel, R. D. and Opper, M.

Europhys. Lett., 403–408. 1990

Download Bibtex Eintrag [57]

<< zurück [58]
vor >> [74]
------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008