direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste

vor >> [16]

Advanced Mean Field Methods: Theory and Practice [20]

||MIT Press. 2001

Download Bibtex Eintrag [21]

A

Variational Inference for Diffusion Processes [22]

Archambeau, C., Opper, M., Shen, Y., Cornford, D. and Shawe-Taylor, J.

Advances in Neural Information Processing Systems 20. MIT Press, 17–24. 2008

Download Bibtex Eintrag [23]

Gaussian Process Approximations of Stochastic Differential Equations [24]

Archambeau, C., Cornford, D., Opper, M. and Shawe-Taylor, J.

Journal of Machine Learning Research: Workshop and Conference Proceedings, 1:1–16. 2007

Link zur Publikation [25] Download Bibtex Eintrag [26]

Approximate inference for continuous–time Markov processes [27]

Archambeau, C. and Opper, M.

Bayesian Time Series Models. Cambridge University Press, 125–140.. 2011

Link zur Publikation [28] Download Bibtex Eintrag [29]

The Variational Gaussian Approximation Revisited [30]

Archambeau, C. and Opper, M.

Neural Computation, 786-92. 2009

Download Bibtex Eintrag [31]

B

Learning of couplings for random asymmetric kinetic Ising models revisited: random correlation matrices and learning curves [32]

Bachschmid-Romano, L. and Opper, M.

Journal of Statistical Mechanics: Theory and Experiment. IOP Publishing, P09016. 2015

Download Bibtex Eintrag [33]

A statistical physics approach to learning curves for the inverse Ising problem [34]

Bachschmid-Romano, L. and Opper, M.

Journal of Statistical Mechanics: Theory and Experiment, 063406. 2017

Link zur Publikation [35] Download Bibtex Eintrag [36]

Perturbative Black Box Corrected Variational Inference [37]

Bamler R., C. Z. O. M. M. S.

Advances in Neural Information Processing Systems 30. IEEE, 11. 2017

Link zur Publikation [38] Download Bibtex Eintrag [39]

Das variationale Dirichlet Prozess Mixture Modell [40]

Batz, P.

2010 HU Berlin

Link zur Publikation [41] Download Bibtex Eintrag [42]

Parameter Estimation for Stochastic Reaction Processes using Sequential Monte Carlo Methods [43]

Batz, P.

2010 HU Berlin

Link zur Publikation [44] Download Bibtex Eintrag [45]

Variational estimation of the drift for stochastic differential equations from the empirical density [46]

Batz, P., Ruttor, A. and Opper, M.

Journal of Statistical Mechanics: Theory and Experiment, 083404. 2016

Link zur Publikation [47] Download Bibtex Eintrag [48]

Approximate Bayes learning of stochastic differential equations [49]

Batz, P., Ruttor, A. and Opper, M.

Phys. Rev. E, 022109. 2018

Download Bibtex Eintrag [50]

Classification of task related fRMI: a complex network analysis [51]

Bey, P.

2014

Link zur Publikation [52] Download Bibtex Eintrag [53]

Construction Algorithm for the Parity Machine [54]

Biehl, M. and Opper, M.

Physica A, 307–313. 1993

Download Bibtex Eintrag [55]

Tilinglike Learning in the Parity Machine [56]

Biehl, M. and Opper, M.

Phys. Rev. A, 6888–6894. 1991

Download Bibtex Eintrag [57]

vor >> [73]
------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008