direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste

Inference in continuous-time change-point models
Zitatschlüssel Stimberg:2011:ICT
Autor Florian Stimberg and Manfred Opper and Guido Sanguinetti and Andreas Ruttor
Buchtitel Advances in Neural Information Processing Systems 24
Seiten 2717–2725
Jahr 2011
Herausgeber J. Shawe-Taylor and R.S. Zemel and P. Bartlett and F.C.N. Pereira and K.Q. Weinberger
Zusammenfassung We consider the problem of Bayesian inference for continuous-time multi-stable stochastic systems which can change both their diffusion and drift parameters at discrete times. We propose exact inference and sampling methodologies for two specific cases where the discontinuous dynamics is given by a Poisson process and a two-state Markovian switch. We test the methodology on simulated data, and apply it to two real data sets in finance and systems biology. Our experimental results show that the approach leads to valid inferences and non-trivial insights.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe