direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments


Genetic attack on neural cryptography
Zitatschlüssel Ruttor:2006:GAN
Autor Andreas Ruttor and Wolfgang Kinzel and Rivka Naeh and Ido Kanter
Seiten 036121
Jahr 2006
DOI 10.1103/PhysRevE.73.036121
Journal Phys. Rev. E
Jahrgang 73
Nummer 3
Zusammenfassung Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe