direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste

<< zurück [1]
vor >> [17]

2011

Learning to Ride a Light Cycle [21]

Haenicke, J.

2011

Link zur Publikation [22] Download Bibtex Eintrag [23]

Bayesian Inference for Models of Transcriptional Regulation Using Markov Chain Monte Carlo Sampling [24]

Stimberg, F., Ruttor, A. and Opper, M.

Proceedings of the 8th International Workshop on Computational Systems Biology (WCSB). Tampere University of Technology, Tampere, Finland, 169–172. 2011

Link zur Publikation [25] Download Bibtex Eintrag [26]

Inference in continuous-time change-point models [27]

Stimberg, F., Opper, M., Sanguinetti, G. and Ruttor, A.

Advances in Neural Information Processing Systems 24, 2717–2725. 2011

Link zur Publikation [28] Download Bibtex Eintrag [29]

Analytical Results for the Error in Filtering of Gaussian Processes [30]

Susemihl, A., Opper, M. and Meir, R.

Advances in Neural Information Processing Systems 24. Curran Associates, Inc., 2303–2311. 2011

Link zur Publikation [31] Download Bibtex Eintrag [32]

Approximate inference for continuous–time Markov processes [33]

Archambeau, C. and Opper, M.

Bayesian Time Series Models. Cambridge University Press, 125–140.. 2011

Link zur Publikation [34] Download Bibtex Eintrag [35]

Estimating parameters in stochastic systems: A variational Bayesian approach [36]

Vrettas, M. D., Cornford, D. and Opper, M.

Physica D: Nonlinear Phenomena. Elsevier, 1877-1900. 2011

Download Bibtex Eintrag [37]

Common Input Explains Higher-Order Correlations and Entropy in a Simple Model of Neural Population Activity [38]

Macke, J., Opper, M. and Bethge, M.

Physical Review Letters. American Physical Society, 208102. 2011

Download Bibtex Eintrag [39]

Expectation Propagation with Factorizing Distributions: A Gaussian Approximation and Performance Results for Simple Models [40]

Ribeiro, F. and Opper, M.

Neural Computation. MIT Press, 1047–1069. 2011

Download Bibtex Eintrag [41]

Bayesian Segmentation of Natural Scenes using Dependent Pitman Yor Processes [42]

Thiel, S.

2011 TU Berlin

Link zur Publikation [43] Download Bibtex Eintrag [44]

2012

Reinforcement learning with Gaussian Processes [45]

Seiler, J.

2012

Link zur Publikation [46] Download Bibtex Eintrag [47]

Bayesian Inference for Change Points in Dynamical Systems with Reusable States—a Chinese Restaurant Process Approach [48]

Stimberg, F., Opper, M. and Ruttor, A.

Proceedings of the International Conference on Artificial Intelligence and Statistics 2012

Link zur Publikation [49] Download Bibtex Eintrag [50]

Bayesian Network Inference [51]

Salah, A. H.

2012

Link zur Publikation [52] Download Bibtex Eintrag [53]

Probabilistic Attack on Neural Cryptography [54]

Iglesias, L. F. S.

2012 TU Berlin

Link zur Publikation [55] Download Bibtex Eintrag [56]

Successful attack on permutation-parity-machine-based neural cryptography [57]

Iglesias, L. F. S. and Ruttor, A.

Physical Review E, 025101(R). 2012

Link zur Publikation [58] Download Bibtex Eintrag [59]

Optimal control as a graphical model inference problem [60]

Kappen, H. J., Gomez, V. and Opper, M.

Machine Learning. Springer, 159-182. 2012

Link zur Publikation [61] Download Bibtex Eintrag [62]

<< zurück [63]
vor >> [79]
------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008