direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

List of Publications

N


The Variational Gaussian Approximation Revisited

Archambeau, C. and Opper, M.

Neural Computation, 786-92. 2009

Download Bibtex entry

Sparse On-Line Gaussian Processes

Csató, L. and Opper, M.

Neural Computation, 641 - 668. 2002

Link to publication Download Bibtex entry


M

Optimal control as a graphical model inference problem

Kappen, H. J., Gomez, V. and Opper, M.

Machine Learning. Springer, 159-182. 2012

Link to publication Download Bibtex entry

J

Bayesian Analysis of the Scatterometer Wind Retrieval inverse Problem: Some new Approaches

Cornford, D., Csató, L., Evans, D. J. and Opper, M.

Journal Royal Statistical Society B, 1–17. 2004

Link to publication Download Bibtex entry

Inferring hidden states in a random kinetic Ising model: replica analysis

Romano, L. B. and Opper, M.

Journal of Statistical Mechanics: Theory and Experiment, P06013. 2014

Download Bibtex entry

Learning of couplings for random asymmetric kinetic Ising models revisited: random correlation matrices and learning curves

Bachschmid-Romano, L. and Opper, M.

Journal of Statistical Mechanics: Theory and Experiment. IOP Publishing, P09016. 2015

Download Bibtex entry

Dynamic state estimation based on Poisson spike trains—towards a theory of optimal encoding

Susemihl, A., Meir, R. and Opper, M.

Journal of Statistical Mechanics: Theory and Experiment, P03009. 2013

Link to publication Download Bibtex entry

Variational estimation of the drift for stochastic differential equations from the empirical density

Batz, P., Ruttor, A. and Opper, M.

Journal of Statistical Mechanics: Theory and Experiment, 083404. 2016

Link to publication Download Bibtex entry

A statistical physics approach to learning curves for the inverse Ising problem

Bachschmid-Romano, L. and Opper, M.

Journal of Statistical Mechanics: Theory and Experiment, 063406. 2017

Link to publication Download Bibtex entry

Approximate inference techniques with expectation constraints

Heskes, T., Opper, M., Wiegerinck, W., Winther, O. and Zoeter, O.

Journal of Statistical Mechanics (JSTAT) 2005

Link to publication Download Bibtex entry


A comparison of variational and Markov Chain Monte Carlo methods for inference in partially observed stochastic dynamic systems

Shen, Y., Archambeau, C., Cornford, D., Opper, M., Shawe-Taylor, J. and Barillec, R.

Journal of Signal Processing Systems 2009

Link to publication Download Bibtex entry

Expectation propagation for continuous time stochastic processes

Cseke, B., Schnoerr, D., Opper, M. and Sanguinetti, G.

Journal of Physics A: Mathematical and Theoretical. IOPscience, 494002. 2016

Link to publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions