direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

List of Publications

Learning curves for Gaussian processes models: Fluctuations and Universality

Malzahn, D. and Opper, M.

Proceedings of the International Conference on Artificial Neural Networks 2001. Springer–Verlag, 271-276. 2001

Link to publication Download Bibtex entry

Online Learning of Wind-Field Models

Csató, L., Cornford, D. and Opper, M.

Proceedings of the International Conference on Artificial Neural Networks 2001. Springer–Verlag, 300-307. 2001

Link to publication Download Bibtex entry

Sparse Representation for Gaussian Process Models

Csató, L. and Opper, M.

Advances in Neural Information Processing Systems 13. MIT Press, 444-450. 2001

Link to publication Download Bibtex entry

Learning Curves for Gaussian processes regression: A framework for good approximations

Malzahn, D. and Opper, M.

Advances in Neural Information Processing Systems 13. MIT Press, 273-279. 2001

Link to publication Download Bibtex entry

Continuous drifting games

Freund, Y. and Opper, M.

Proceedings of the Thirteenth Annual Conference on Computational Learning Theory. Morgan Kaufmann, 126-132. 2000

Link to publication Download Bibtex entry

Efficient Approaches to Gaussian Process Classification

Csató, L., Fokou´e, E., Opper, M., Schottky, B. and Winther, O.

Advances in Neural Information Processing Systems 12. MIT Press, 251-257. 2000

Link to publication Download Bibtex entry

General Bounds on Bayes errors for regression with Gaussian processes

Opper, M. and Vivarelli, F.

Advances in Neural Information Processing Systems 11. MIT Press, 302-308. 1999

Link to publication Download Bibtex entry

Mean field methods for classification with Gaussian processes

Opper, M. and Winther, O.

Advances in Neural Information Processing Systems 11. MIT Press, 309-315. 1999

Link to publication Download Bibtex entry

Finite Dimensional Approximation of Gaussian Processes

Trecate, G. F., Williams, C. K. and Opper, M.

Advances in Neural Information Processing Systems 11. MIT Press, 218-224. 1999

Link to publication Download Bibtex entry

Replicator Dynamics

Opper, M. and Diederich, S.

Proceedings of the Europhysics Conference on Computational Physics CCP 1998. Elsevier Science, 141-144. 1999

Download Bibtex entry

A mean field algorithm for Bayes learning in large feedforward neural networks

Opper, M. and Winther, O.

Advances in Neural Information Processing Systems 9. MIT Press, 225-231. 1997

Link to publication Download Bibtex entry

Dynamics of Training

Bös, S. and Opper, M.

Advances in Neural Information Processing Systems 9. MIT Press, 141-147. 1997

Link to publication Download Bibtex entry

General Bounds on the Mutual Information Between a Parameter and $n$ Conditionally Independent Observations

Haussler, D. and Opper, M.

Proceedings of the Eighth Annual Conference on Computational Learning Theory. ACM Press, 402-411. 1995

Link to publication Download Bibtex entry

Supervised Learning: Information Theoretic Bounds on Predictive Errors

Opper, M. and Haussler, D.

Proceedings of the IEEE workshop on Information Theory (ITW'95), 6.2. 1995

Link to publication Download Bibtex entry

Learning in Artificial Neural Networks: The Statistical Mechanics Approach

Opper, M.

Supercomputing in Brain Reasearch: From Tomography to Neural Networks. World Scientific, 321–330. 1995

Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions