WORST CASE PREDICTION OVER SEQUENCES
UNDER LOG LOSS

MANFRED OPPER* AND DAVID HAUSSLER'

Abstract. We consider the game of sequentially assigning probabilities to future
data based on past observations under logarithmic loss. We are not making probabilistic
assumptions about the generation of the data, but consider a situation where a player
tries to minimize his loss relative to the loss of the (with hindsight) best distribution from
a target class for the worst sequence of data. We give bounds on the minimax regret
in terms of the metric entropies of the target class with respect to suitable distances
between distributions.

1. Introduction. The assignment of probabilities to the possible out-
comes of future data which is based on past observations has important
applications to prediction, data compression and gambling. In a scenario
where the data are assumed to occur at random with an unknown proba-
bility distribution, this problem can be treated as a well known statistical
estimation problem. Optimal strategies can be found within a game theo-
retic approach, where a statistician (in the following called ‘learner’) tries
to minimize a certain average loss in a game played against ‘nature’, which
chooses unfavourable probabilities for the data out of a given family.

In some cases, however, the assumption of randomness and of a true
distribution for the data may not be fulfilled, or, there may not be enough
prior information to specify a reasonable target class of distributions to
which the true one belongs. Recently, new approaches to the prediction on
sequences of data that avoid the assumption of randomness have found a
great deal of interest in computational learning theory (see e.g. [2, 3, 4])
and information theory [5, 6, 7, 14]. For a collection of recent work, see the
webpage http:// www-stat.wharton.upenn.edu/Seq96/ of a workshop
on prediction over sequences, held at UC Santa Cruz in 1996.

Instead of considering average losses, the goal is to find strategies
which achieve a small accumulated loss for arbitrary sequences of data in
a game of sequential prediction. Assuming a target family of predictors,
often called experts, which is hopefully well suited to the data, the learner
tries to find a strategy, which for any sequence guarantees a total loss that
is not much larger than that of the expert which is best with hindsight.

For the important case of logarithmic loss, and families of experts
which assign probabilities independently of past data, we will give general
bounds for the minimal relative loss or regret which can be achieved with
such a strategy. Our work differs from the other recent work in this area in
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that it applies to both finite dimensional and infinite dimensional families
of (simple) experts.

2. Notation. The following notation and assumptions will be used
throughout the paper.

Let Y be a complete separable metric space. All probability distri-
butions on Y discussed in this paper are assumed to be defined on the
o-algebra of Borel sets of Y. Let © be a set, and for each § € ©, let Py be
a probability distribution on Y. We assume that for any 6 # 6* € O, the
distributions associated with § and 6* are distinct in the sense that there is
a Borel set S C Y such that Py(S) # Py« (S). In addition, we assume there
is a fixed o-finite measure v on Y that dominates Py for all § € © (i.e. for
any Borel set S C Y, v(S) = 0 implies Pp(S) = 0). We will also make
(implicitly) the assumption that any other distribution @) on Y mentioned
in the results below is also dominated by v. Radon-Nikodym derivatives
(densities) with respect to v will be denoted by lower case symbols like

d
q= d—g and py = ddi‘f.

3. A sequential prediction game. Suppose that n symbols, y” =
Y1,---,Yn are observed sequentially, i.e. one after the other. After each
observation g; 1, where ¢ = 1,...,n, a learner is asked how likely each

value y € Y is to be the nezt observation. IL.e., the learner’s goal is to
assign a probability distribution ¢(y|y’~!) over the possible outcomes y of
the next observation, based on the previous values. When at the next time
step t, the actual new observation y; is received, the learner suffers a loss,
which, throughout this article, will be the logarithmic loss —log q(y:|yt™1).

Logarithmic loss has an important meaning in data compression, where
any assignment of probabilities to data values can be considered as an assi-
gnment of possible codelengths to the data using a uniquely decodable code
[8]. The total log loss is (ignoring the problems of truncating continuous
data values and the rounding of integers) proportional to the length of the
compressed sequence of data. For an interpretation of logarithmic loss in
terms of the wealth achieved in gambling, where probabilities stand for the
relative amount of money bet on future data values, see [8, 9]

At the end of the game, the learner has suffered a total loss

n
L(g,y") = = > _logq(yily' ™).
t=1

All n predictions q(y;|y*='), t = 1,...,n can be composed into a single
joint distribution

n

aw™) =[] alwely'™).

t=1

On the other hand, any joint distribution g(y™) defines a sequence of pre-
dictive distributions from its conditionals ¢(y;|y'~"). Hence, the learners
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goal can be understood as an assignment of a distribution ¢ to the set of
all possible sequences y™ € Y™ and the loss can be written as

L(g,y") = —logq(y").

If the sequences were known to be randomly drawn from a distribution
p(y™), then it is easy to see that in order to achieve a minimal expected
loss, the learner should predict with the conditional distributions p(y|y'~!)
fort =1,...,n—1. If the true distribution is not known, only the fact that
it belongs to a family of distributions py, 8 € ©, then a possible strategy
would be to minimize the expected extra loss above the minimum for the
worst 6. This means that the learner, trying to be prepared for the worst
distribution of sequences, should minimize the risk!

sup / dv(y™)pe(y™) {—logq(y™) +logpe(y™)} .
[

See [12] and papers cited there for a discussion this average loss framework
and the results that can be obtained there.

We will now go beyond the average loss framework and analyze a
strategy which aims at performing well on individual sequences. In this
approach, no probabilistic assumptions about the generation of sequences
is made. The target family of distributions py can now be seen as a family
of experts which is hoped to be well suited to the sequences. The goal
of the learner is now to find a distribution ¢, which makes the loss on
the sequence y™ not much bigger than that of the best expert in the target
class pg, 6 € ©. This best expert, which achieves a loss — supycg log ps(y™),
depends on the entire sequence, and will not be known to the learner (before
the last symbol y,, is observed). In a worst case scenario, the learner has
to choose a distribution ¢ which minimizes the regret that is the difference
between his loss and the loss of the best expert,

R(q,y") = —logq(y") + suplog py(y").
e
The minimal regret achievable by such a strategy is

n
(1) R, = infsup R(q,y") = inf sup {log M} .
a gy a gy a(y™)

Bounds and asymptotic expressions for this minimax regret have been ob-
tained for finite dimensional parametric families of distributions, such as
probability mass functions over a finite alphabet or distributions which are
smooth functions of the parameters [4, 5, 6, 7].

Here and in what follows, v(y™) and pg(y™) are used to denote the n-fold products
of the distributions v and py respectively, evaluated at the point y™.
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In this paper, we give a general upper bound on R, for target families
of product distributions

= I po(we),

which are uniformly bounded away from zero and infinity. The bounds
can be applied to nonparametric families of distributions, where, to our
knowledge, minimax results for arbitrary sequences have not been obtained.

Our calculation is based on the explicit solution to the minimax pro-
blem (1), which was given by Shtarkov [5]. He found that the distribution

in(y™) Supeeepo(y)
[ dv(z") supgee po (")

minimizes the worst case regret sup,. R(q,y"). It is easily seen that the
regret for this distribution, R(§,,y™), does not depend on the sequence y™
and for all y™ it satisfies

@) RlGn,y" =n_m/w ) sup po(y™).
0cO

From this, the proof that ¢, achieves optimality is simple. For any q # Gy,
there will be at least one sequence 2", for which ¢(2") < §,(z") (note that
both distributions are normalized!). Hence, we have

sup R(q,y") = R(q,2") > R(¢,2") = sup R(gn,y").
y" y"
4. Upper Bound on the Minimax Regret. For the following, the
definition of metric entropy, also called Kolmogorov e-entropy, is needed

[1].

DEFINITION 1. Let D be a metric and (S, D) be a complete separable
metric space. A partition IL of S is a collection {m;} of Borel subsets of
S that are pairwise disjoint and whose union is S. The diameter of a set
A C S is given by diam(A) = sup,, ,c 4 D(x,y). The diameter of a partition
is the supremum of the diameters of the sets in the partition. For e > 0,
by D(e, S, D) we denote the cardinality of the smallest finite partition of S
of diameter at most €, or oo if no such finite partition exists. The metric
entropy of (S, D) is defined by

K(e, S, D) =logD(e, S, D).

We say S is totally bounded if D(e, S, D) < oo for all € > 0.

DEFINITION 2. Fore > 0, an e-separated subset of S is a subset A C S
such that for all distinct x,y € A, D(x,y) > €. By the packing number
M(e, S, D) we denote the cardinality of the largest finite e-separated subset
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of S, or oo if arbitrarily large such sets exist. = The following lemma is
easily verified [1].
LEMMA 1. For any e > 0,

M(2¢, S, D) < D(2¢,S,D) < M(e, S, D).

It follows that the metric entropy K (and the condition defining total
boundedness) can also be defined by packing numbers in place of D, to
within a constant factor in e.

THEOREM 1. Let 0 < ¢ < py(y) <c< oo forally €Y and all 0 € O.
Set further

Do (6,0") = sup |log pg(y) — log pe: (y)]
y

for all 6,0' € ©. Then there exists a positive universal constant A such
that for n > 1 and for all € > 0,

R, <K(6,0,Dy) + A\/E/ VK(0,0, Dy )ds + 8ne.
0

The proof of (1) is given is a series of lemmas. We begin with some
elementary steps that cast the problem into a form where the tools of
empirical process theory [11, 10] can be applied. We first construct a
minimal partition of © with D, diameter at most e consisting of the subsets
Or, k=1,...,D(¢,0,Dy) and try to control the sup in equation (2) inside
of each set.

Let us fix a probability distribution py, ,0r € Oy for each set in the
partition of ©. For our first lemma, we define the expectation IE; for each
k by setting

E,(F) = / dv(y")ps, ™) F(y™)

for any function F'(y™). For each 0, let

anfg(y”) _ 2”: <log po(yi) Ey log Po(yi) ) _

im1 Po (y:) Po (y:)

Let further

n k
S® (y™) = sup |2
€O

LEMMA 2. For all e > 0,

R, <K(6,0,Ds) + log max Ey exp[S™)]
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Proof:
R — /du )suppe(y™) by Equation (2)
cO
D(€,0,Do)
< [ dv(y™ sup po(y"
Jar ™S o

< D(e, 0, Do) max / dv(y™) sup po(y™)
k [ASSTA

n
= D(¢,0, Dy) max Ey sup Po(y")
k HEB, pek(y )

= po(ys)
= D(e,0, Do) max Eg exp | sup log
( o) Le@k ; Po (yi)

D(e,©,D )maux]E,c exp lsup Z <10g Po(yi) — Eylog Po(yi) >]

PEOK ;1 Poy. (y ) p@k (yz)
D(e, 0, Dy )m,?Lx]E,c exp[S(F)].

The penultimate line follows from the positivity of the KL-divergence, since
for each ¢

E; log ——= P (y:) /du Yoo, (y )log po(y) <0.
o, (Yi) P, (Y)
O

Now let us fix the kth set in the partition, omitting the index k from
now on when it is clear from the context. Note that S,(y™) is the Lo
norm of the collection {Z, : 8 € O} of random variables. When y™ is
chosen randomly according to the distribution py, , then for each fixed 0,
the random variable Z, g is actually a sum of n i.i.d. zero mean random
variables, with distribution depending on #. This is the type of quantity
that we can use the techniques of empirical process theory to bound. The
first step is to relate IE exp[S,] to ES,,.

LEMMA 3. Let Xy be a family of functions Xy : 'Y — R, indezed
by 0 € O, such that for all y € Y, supyce | Xo(y)| < C/2. Let yi,...,yn
be a collection of i.i.d. random variables and let T,(y") =
suPyeo | iy Xo(yi)l. Then

1
Ee™ < exp[anC’Q]elET" .

The lemma is proved in the appendix using Lemma 6.16 of [11].
To apply this lemma, let © = © and

e 22 g e P2W)
Xoly) =log oy~ Erlos 0y
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so that T,, = S,,. Note that

(3) Xo(y) < 2sup|logpe(y) — logpe, (y)| = 2Do(0,6r) < 2¢
Yy

since the diameter in each set of the partition is at most e. Hence from
Lemma 2 and Lemma 3 we have

(4) R, < K(€,0, Do) + 8ne” + max By [SP).

To bound ES,,, we need
DEFINITION 3. A collection of zero mean random variables {Zy: 0 €

O} is called a sub-Gaussian process with respect to the seminorm D on ©,
if for any 6,0 € ©,

Pr(|Zs — Zo:| > t) < 2e 20 /D°(0.0)

The following lemma, easily follows from Corollary 2.2.8 on page 101 of
[10]

LEMMA 4. Let {Zp : § € O} be a sub-Gaussian process under the
norm D with finite packing numbers M(e,©,D) for all € > 0. Then there
exists a positive universal constant A such that for every e > 0 and for each

0* €O

E sup |Zy| < [E|Zy-
0:D(6*,0)<e

+ A/ V1og M(9,0, D)do.
0

To apply this lemma, we choose 8* = 6, for each set in the partition
and (omitting the dependence on k for convenience) set Zy = Z, 4. Let
the density on y™ be dv(y"™)pg, (y™) and IE denote expectation under this
measure, as above.

Now fix some 6 and ¢’ in ©. Let U(y") = > I, U;, where U; =
log % —Elog %. Then U(y™) = Zy(y™) — Zp: (y™). As in Equation
3, it is clear that |U;| < 2D (6,0"). Thus U is a sum of n bounded
ii.d. random variables. Hence, we may apply Hoeffding’s inequality [15]
to obtain

Pr(|U] > t) < 2exp [~/ (2nD2 (6,6)]
Since U = Zy — Zy, this shows that Zy is sub-Gaussian with respect to
D =./nD.

Since 6* = 0, and Zyp- = Zp 9, = 0, it follows from Lemma 4 and
Equation (4) that

(5) R, < K(e,0,D.) + 8ne? + A/ Vlog M(6,0, D)ds.
0

Since D = /nDq, the theorem follows. m
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5. Lower Bound. A lower bound on R, is provided in terms of the
metric entropy of © with respect to the so called Hellinger distance, which
is defined as

Du(6,) = { [ avts) (Vo) - Viw ) '}

The bound is established from the simple fact that R,, is not smaller than
the minimax risk in the framework where the data are generated at random
from a distribution in ©, that is, from equation (1)

1
2

©)  Bozinfsup [l )pole") (- oga(s") + logm(u™)}.

A general lower bound on the latter quantity for product distributions
po(y™) was recently obtained in [12]. From Lemma 7, part 1 of [12] and
Equation (6) above, we get

LEMMA 5. Assume (©,Dy) is totally bounded. Then for alln > 1,

2

R, > supmin{K(e, 0, Dg), ni} —log 2
e>0 8

Thus R, is bounded below in terms of the Hellinger metric entropy and

above in terms of the D, metric entropy. When these entropies are close,

the resulting bounds can sometimes be used to characterize the growth rate

of R, as seen in the following.

6. Example: A Nonparametric Family of Densities. Many in-
teresting nonparametric families of densities have metric entropies which
scale as K(6,0, Do) < const(§)* as § — 0. Assuming that a < 2, we can
show that in the same limit

/ VK(6,0,Dy)dd < const ez
0

In such a case, R, in theorem (1) is easily bounded by setting € n~ e
for a < 2. Then one has for large n,

(7 R, < const nT*s

for a < 2.

A common example is given by the Lipschitz class © of densities on a
real interval which have all derivatives |p((,i) (y)| < Cy,fori =0,1,...,r, and
P (v) = (') < Cly — ', (0 < 7 < 1). If we further assume that all
densities are uniformly bounded away from zero, we can use a result of [13]

1
to show that the metric entropy behaves like K (e, 0, D) = const (%) T
for € — 0, which yields

1
R,, < const n20+n+1
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for large n and r+v > 3. As can be shown [12] for this example, the lower
bound (5) yields the same exponent for increase of R,, with n as the upper
bound. Since the lower bound is related to the statistical risk of the random
sequence framework, the latter result also shows, that (at least for the
present example) the more pessimistic assumption of the worst sequence
framework does not lead to much higher extra losses than those of the
random sequence framework. A similar result was obtained for parametric
families in [4, 6, 7, 9]. Whether this will be true in significantly more
general settings is a problem for further research.

7. Appendix.
Proof of lemma (3): Write T}, — IET,, as a sum of Martingale-differences
dj, ie. T, —ET, = Z;’lﬂ dj where

(8) d; =BT, — BN,

Here, for any k, and any function F(y™), EM*F = E(F(y")|y,---,yr)
denotes the conditional expectation given yi,..., Y.
The proof is based on the following inequality

9) |d;| < St;plXe(yj)l +1E81;p|Xe(y)l

which is due to V. Yurinskii and is proved in Lemma 6.16 on page 163
of [11]. For completeness, we give a sketch of the proof here. With T,, =

SUpgeo | Yorq Xo(yi)| and the definition Ty\j = supy | Zi# Xo(yi)|, we get
from the triangular inequality for the sup norm

(10) T — Thj] < sup | Xo(y;)l-

Further, we can write

(11) dj = ENT, — B4 T, — {EY T, ; - EY T, }.

This is true, because by the independence of 3, ,; X¢(y;) and y;, the terms
in the curly brackets give zero. Hence, using (105 and (11) we get

(12) d;| < EA Sup | Xo(y;)| + B4 Sup | Xo(yj)]

(13) SI;plXe(yj)l +1ESI;p|Xo(y)I,
which proves (9).
We now use the properties of conditional expectations to bound

_ " ody
Ee'» BT = Fe2s—1 %
n—1
— IEeZJ'=1 dj]EAn—ledn
n—1

. dj 1
< Beim  expl5 (sup [ Xo ()] + Esup [ Xo(y,)))
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n
< exp §(sgp | Xo(yn)| + Esup | Xo(yn)])?

< exp[%ncz].

In the first inequality, the Martingale property EA"-1d, = 0 is used to-
gether with (9) and the fact that any bounded random variable V' with
V] < A and EV = 0 satifies EeV < e24°. The second inequality is
obtained by iterating the first one. m|
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